网站首页 > 新闻中心 > 从八个方面概述污泥膨胀和泡沫的控制方法...

 

从八个方面概述污泥膨胀和泡沫的控制方法

发布时间:2018-05-22 09:38:53 浏览次数:438
 

一、超声预处理技术
Khanal等研究发现,仅仅超声处理2 min,丝状菌的结构完整性被显著破坏,细菌细胞没有明显的破坏,经过超声30 min,丝状菌细胞壁完全解体。
。超声预处理技术可以破坏污泥絮体的细胞及结构,提高细胞的可生化性,而且可以使丝状菌菌丝断裂,降低丝状菌丰度。有研究报道,对污泥进行超声预处理可以有效减少中温沼气池的生物泡沫。 Alfaro等研究发现,采用运行能耗为66.7 kWh/m3的超声波处理污泥,厌氧消化池中的丝状菌数量大大减少,丝状菌丰度从“+++级”降到“±级”。尽管超声预处理技术对丝状菌的控制有显著效果,但是相对于热水解技术来说,该技术的能源消耗较大,运行费用较高,因此在实际工程应用中超声预处理技术的能耗标题题目是一个需要着重考虑的方面。
二、热水解技术
Barjenbruch等研究发现,热水解技术(在121 ℃下加热60 min)相比机械搅拌和酶法预处理技术具有较好的发泡控制性能。有研究表明,坎比工艺的热水解预处理技术对厌氧泡沫的控制具有显著效果。热水解技术是一种有效的污泥预处理技术,可以改善剩余污泥和浓缩污泥的脱水性能,也是一种十分有效和经济可行的厌氧泡沫控制措施。热水解技术相对于几种被广泛接受的生物泡沫控制策略具有明显优势,但是其操作压力和温度控制仍需要进一步的优化改善。 Alfaro等研究发现,热水解技术(在170 ℃下蒸汽加热15 min)能够急剧降低以微丝菌为优势菌群的丝状菌丰度(泡沫指数由从5级降到2级)。
三、厌氧消化泡沫的控制
针对厌氧消化泡沫的控制措施有以下几种:降低细胞平均停留时间、降低有机负荷、加强机械搅拌、投加化学药剂(如聚合铝盐)、热水解技术以及对污泥进行超声预处理等。
厌氧消化泡沫普遍存在于厌氧消化池中,其主要发泡成因有以下三点:(1)由于有机负荷过高导致挥发性脂肪酸(VFA)特别是乙酸的积累所致;(2)污泥中含有大量的表面活性剂;(3)污泥中含有大量的丝状菌,如戈登氏菌(Gordonia amarae)和微丝菌。
向泡沫喷洒水、加强上部搅拌、对发泡污泥进行连续选择性浮选以及减少水量的冲击负荷等方法都能对污泥膨胀和生物泡沫起一定作用,在运用时应根据现场的实际情况加以选择。
四、投加特定微生物
虽然这些噬菌体的控制机理尚不明确,但是在实验室规模上的各种研究表明,噬菌体对丝状菌的控制是有效的。 Inamori等发现有两种具有胞咽囊的纤毛虫能够吞食021N型菌和浮游球衣细菌这两类丝状菌,对由这两类丝状菌引起的污泥膨胀和生物泡沫现象有很好的处理效果。另外,也有研究发现,某些特定的噬菌体能够对部分发泡细菌起控制作用,如名为GTE2、GTE5、GTE7、TPA2的噬菌体所具有的特征及其基因组序列对稳定污水处理厂中的污泥膨胀和生物泡沫有很大帮助。通过投加特定微生物来控制污泥膨胀和生物泡沫仍处于实验室阶段,在实际污水处理厂中尚未广泛采用。有研究提出,采用轮虫可杀死大量的丝状菌,提高污泥沉降性能,从而控制污泥膨胀和生物泡沫现象。将噬菌体引入实际工程应用中来减少丝状菌的数量,是一种安全有效且环境友好的方法。
五、投加化学药剂
有研究表明,投加10 mg Cl/g MLSS的NaClO能有效解决微丝菌过度增殖造成的污泥膨胀和生物泡沫标题题目。因此研发投加量少、见效快、无复发作用,以及能够选择性杀死丝状菌的新型化学药剂是今后主要的研究方向。黄程兰等研究发现,氯化钙溶于水后会分解产生氯离子,氯离子在水中具有灭菌消毒作用,可以杀死部分丝状菌,抑制丝状菌的生长,促进菌胶团的形成,对解决污泥膨胀有很好的效果。 Guo等发现由低底物浓度梯度引起的耐氯021N型丝状菌,在NaClO剂量高达80 mg Cl/g SS的情况下仍能够维持细胞的完整性;但加入30 mg/g SS的溴化十六烷基三甲基铵(CTAB)可渗透渗出渗出该耐氯菌的细胞壁,从而将其选择性杀死,显著提升污泥沉降性能。
。在实际工程应用中,投加化学药剂仍存在一些标题题目,如药剂投加量大导致剩余污泥量大大增加,灭菌剂对丝状菌不具有选择性而抑制其他菌群的活性导致出水水质变差,以及药效短暂而极大增加了运行成本等。通过向反应器投加特定的化学药剂(Cl2、O3、H2O2等)可以杀死废水中的丝状菌,从而消除污泥膨胀和生物泡沫现象。
六、曝气池添加前置生物选择器
缺氧生物反应器的底物贮存能力会因未知原因降低,导致溶解性有机底物大量进入后续曝气池,引发丝状菌生长,这些都是目前需要解决的关键标题题目。大量的试验数据证明,生物选择器能永久性地控制由以下丝状菌导致的污泥膨胀:021N型菌、发硫菌、S. Natans、1701型菌、N. limicola、软发菌等。接触时间太短或太长都会引起后续生物处理工艺中丝状菌的生长,在设计中一般取5~30 min。 Bitton发现好氧生物选择器在泥龄5 d时可以有效抑制诺卡菌的生长,而Ayers等发现厌氧生物选择器是控制微丝菌生长最有效的长期解决方法。好氧生物选择器对污泥膨胀控制效果的好坏,取决于对接触时间和曝气量的设计。一般好氧生物选择器的曝气量设计采用15%~30%的溶解性COD去除率进行计算。但当进水中含有硫化物时,常会引起丝状硫氧化菌的生长,导致厌氧选择器中污泥沉降性能的下降。另外,曝气量过小会刺激菌胶团分泌过多的胞外聚合物(EPS)而引发非丝状菌膨胀;若过大,不仅造成能量的浪费,且对污泥絮体的形成造成负面影响。
好氧生物选择器是根据扩散选择理论,在曝气池前端或首段设置高负荷区域,通过负荷的变化来抑制低负荷条件下的丝状菌过度繁殖;而厌氧和缺氧生物选择器主要利用微生物代谢机制的不同来抑制丝状菌的生长,预防污泥膨胀的发生。 RBCOD/NO3ˉ-N过小时,反硝化进行不彻底,引起丝状菌膨胀;比值过大时,会因NOxˉ-N的完全反硝化而出现厌氧状态。缺氧生物选择器的主要设计参数是易生物降解COD(RBCOD)与NO3ˉ-N的比值和接触时间。
生物选择器是通过提供各种较为适宜的生存环境(溶解氧、pH或污泥浓度等)来选择优势微生物的装置。另外有研究报道,缺氧生物选择器对诺卡菌有控制作用,对微丝菌则无明显作用。厌氧生物选择器在实际工程中也得到了广泛应用,且控制效果比较明显。生物选择器主要分为好氧生物选择器、厌氧生物选择器及缺氧生物选择器三种。
七、调节曝气池溶解氧量
通过合理调节DO和有机负荷来防止低溶解氧引起的丝状菌污泥膨胀,是污泥膨胀控制最直接、经济和有效的方法。高春娣等研究发现,当A/O工艺长期处于0.5 mg/L的低溶解氧状态时,会发生以软发菌(H. hydrossis)为优势菌的丝状菌膨胀,SVI一直保持在300 mL/g以上;将DO的质量浓度提高到2.0 mg/L,同时有机负荷降低到0.37 kg COD/(kg MLSS?d),能够有效控制污泥膨胀,SVI下降到150 mL/g。曝气池长时间处于低溶解氧状态常常会引起丝状菌污泥膨胀,这种污泥膨胀的控制措施是提高溶解氧量,这就需要提高曝气系统的供氧能力和降低有机负荷。 Palm等研究发现,DO浓度与系统有机负荷成函数关系,一般当有机负荷约为0.5 kg COD/(kg MLSS?d),并且DO质量浓度在2.0 mg/L时可以有效控制丝状菌的生长。
八、降低细胞均匀停留时间
控制MCRT在9 d以内,可以将曝气池中的诺卡菌(Nocardia)消除。国内外较为常见的发泡微生物平均世代时间较长,降低细胞平均停留时间(MCRT)可以有效控制污泥膨胀和发泡现象。但这种控制方法在实际污水厂中很难实现,曝气池中的硝化菌平均世代时间较长,与采用此方法相矛盾。 Noutsopoulos等发现,当MCRT为8~10小时,可以有效抑制微丝菌的生长。